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Thomas-Fermi charge mixing for obtaining self-consistency in density functional calculations
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~Received 18 June 2001; published 6 September 2001!

We present a method for charge mixing in self-consistent density functional calculations which uses the
Thomas-Fermi-von Weizsa¨cker equation to solve implicitly for the charge density response function to the
potential. This approach has significant improvements over existing methods, particularly for inhomogeneous
systems with large unit cells which commonly suffer from poor convergence due to charge sloshing.
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Ab initio electronic structure calculations have become
integral part of the study of material properties. Dens
functional theory~DFT! ~Refs. 1 and 2! is the most widely
usedab initio approach in large scale material simulation
Accurate predictions of mechanical properties, such as h
ness, and electronic properties, such as conductivity, h
made it an indispensable tool. As a result of ever-increas
processor speeds and parallelization, larger and larger
tems can be simulated with DFT basedab initio methods.
Studying these larger systems is crucial for our understa
ing of complex systems/materials~surfaces, interfaces, de
fects, amorphous, etc.!. However, as the size of the system
has become larger, the old problem of charge sloshing
resurfaced as a major issue. This problem comes from
slow convergence of the self-consistent potential in the
tential ~or charge! mixing schemes commonly used in the
calculations. Here, a more efficient potential mixing schem3

is tested, which uses an explicit Thomas-Fermi-von We
säcker equation to solve for the electronic response func
of the system. The time spent for the solution of the Thom
Fermi-von Weizsa¨cker equation is minimal for large system
as it only involves a minimization on the charge density a
not the wave functions.

There are generally two approaches to handling the s
consistency in a DFT calculation. The first approach is
consider the total energyE@$c i%# as a function of only the
Kohn-Sham2 wave functions$c i% or the potential.4 As a re-
sult, minimization methods~e.g., the conjugate gradien
method! are used to directly minimize the function
E@$c i%#.5 There are drawbacks to such an approach a
requires a lot of computer memory and many computati
ally efficient linear algebra techniques cannot be used.
second and most heavily-used approach is to change the
linear minimization ofE@$c i%# to an eigenvalue problem
but with an additional self-consistent requirement. We fi
require$c i% to satisfy the Kohn-Sham~eigenvalue! equation

@2 1
2 ¹21Vin~r !1V̂nl~r !#c i5« ic i . ~1!

Vin(r ) is a given input potential, andV̂nl(r ) is the nonlocal
potential existing only in pseudopotential calculations. N
for $c i% in this self-consistent field~SCF! calculation to be
the minimum ofE@$c i%#, the potentialVin(r ) must equal the
output potentialVout(r ), calculated from the occupied charg
densityr(r )5( i Poccuc i u2,
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VLDA@r#5(
R

v ion~r 2R!1E r~r 8!

ur 2r 8u
d3r 81mxc„r~r !….

~2!

Here v ion(r ) is the local part of the ionic pseudopotenti
andmxc(r(r )) is the LDA exchange-correlation potential.

MatchingVin(r ) with Vout(r ) is often done iteratively by
producing aVin

m11(r ) for the m11th iteration from the
$Vin

l (r ),Vout
l (r )% pairs of the lastm iterations. The genera

tion of Vin
m11(r ) is called potential~charge! mixing as a mix-

ture of Vin
l (r ) and Vout

l (r ) generates theVin(r ). An often
used linear mixing scheme is

Vin
m115~12A!Vin

m1AVout
m . ~3!

It is easy to see why such mixing schemes cause instab
Let Vsc(r ) be the final self-consistent local potential givin
dV5V2Vsc . The resulting output Coulomb potentia
which is the dominant term and causes the charge slosh
is given in reciprocal spaceq by,

dVout
Coul~q!>(

q8

24p

q2
x~q,q8!dVin~q8![JdVin . ~4!

x(q,q8) is the susceptibility defined asxdVin5drout ,
which typically has a magnitude of order one.

From Eqs. ~3! and ~4! we have dVin
m115@(12A)

1AJ#dVin
m . Notice that for a big system~or any system with

one long dimensionL), the smallest nonzeroq in ~4! @q
50 does not contribute# is (2p/L). As a result, the magni-
tude of the maximum eigenvalue ofJ, eJ , in ~4! is large. If
A is a constant larger thanu2/eJu, then the magnitude of the
maximum eigenvalue of@(I 2A)1AJ# is larger than one,
and the iterative process is divergent. This is the origin of
charge sloshing problem. A small error indVin will be am-
plified in dVout . As a result, some calculations need sm
values for A~e.g., 0.01! leading to very slow convergence
This problem associated with simple mixing schemes is d
cussed extensively in Annett’s work.6

A better method is to use a matrixA in place of a scalar.
Any A that leads to the magnitude of the maximum eige
value of @(I 2A)1AJ# to be smaller than one will have
convergent iteration. The bestA is the one which leads to
@(I 2A)1AJ#50, thus A5(I 2J)21. This approach was
used in Ref. 7 in the early days ofab initio calculations.
©2001 The American Physical Society01-1
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Notice that,I 2J(q,q8) is just the dielectric matrix«(q,q8).
Unfortunately, in modern large scale calculations, the
dielectric matrix of the system is difficult to calculate
estimate. Thus, often an approximate« is used. One popula
approximation is Kerker mixing,8 which uses the Thomas
Fermi dielectric function for the homogeneous electron g
and leads to a diagonalA(q,q8) proportional to q2/(q2

1q0
2). For homogeneous systems this damps the ch

sloshing and significantly speeds up the convergence.
In the above discussion, onlyVin

m and Vout
m of the m’th

iteration are used to constructVin
m11 . In principle,

$Vin
l (r ),Vout

l (r )% for all the previousm iterations can be
used. In the work of Dederichs and Zeller,9 following a de-
tailed analysis, the constant A for each self-consistent ite
tion is readjusted according to theVin , Vout of the previous
cycles. The Broyden10 method updatesA, the inverse of the
Jacobian matrix~charge dielectric matrix! of the nonlinear
function F@Vin#5(Vin2Vout@Vin#), with the current
(Vin ,Vout) pair. However, it suffers from poor convergen
most noticeably when Eq.~1! is not solved to high accurac
for every SCF cycle. In the initial SCF cycles, it is not ef
cient to have a high accuracy for the eigenvectors since
are far from the true potential.

A more recent approach takes a linear combinationVin
new

5( lClVin
l , and finds a minimum of uuVout

new2Vin
newuu

5uu( lCl@Vout
l 2Vin

l #uu, with ( lCl51. In this Pulay
scheme,11 the ‘‘in’’ and ‘‘out’’ potential are not mixed. Thus,
after the$Cl% are obtained,Vin

new andVout
new5( lClVout

l can be
mixed using, for example, the Kerker mixing leading to
Pulay-Kerker ~PK! mixing scheme. G. Kresse and
Furthmüller12 showed the equivalence of the Pulay sche
to the modified Broyden method of D. D. Johnson.13 The PK
method works well for homogeneous systems partly beca
the dielectric function of such systems can be approxima
by the Thomas-Fermi dielectric function of a homogeneo
electron gas~the basis of the Kerker mixing!. However, for
inhomogeneous systems the homogeneous electron gas
longer a good approximation for the dielectric functio
Thus, for a surface calculation, the PK method may not c
verge, as will be shown later.

In our approach3 we use the Thomas-Fermi-von Wei
säcker ~TFW! equation14 to directly solve for the dielectric
response, instead of using the homogeneous electron
model. For smallq, this step replaces the Kerker mixing o
Vout

new with Vin
new. We will refer to this method as the Pulay

Thomas-Fermi~PTF! mixing scheme. The Thomas-Ferm
model has been widely used to describe the dielectric
sponse function, and results compare well with other me
ods such as the random phase approximation.15 The TFW
formula has also been used to study the dielectric functio16

The advantage of the TFW formula is that the charge den
is smooth and realistic near the atomic nucleus and in
classically forbidden regions. Since an explicit solution
the TFW equation for a given inhomogeneous system is
pected to describe the dielectric function well, especially
small q components~the cause of the charge sloshing!, its
use for potential mixing should speed up convergence.
large systems, the time spent on solving the TFW equa
12110
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for each self-consistent cycle is a relatively small fraction
the total time. Although more advanced kinetic energy fun
tionals do exist,17 we found that the use of the TFW form i
sufficient for our purpose.

The full dielectric function«(r ,r 8) is not solved explic-
itly which would be too expensive, instead we solve for
implicitly. So given aVin andVout pair from the Pulay mix-
ing, according to the TFW formula, we ask what is theVin

next

that satisfies self-consistency. First, to makerout the solution
of Vin , we have to modify the TFW formula. Withrout

1/2(r )
5wout(r ), the wave function type equation for the modifie
TFW formula is:

@2 1
2 ¹21arout

2/3~r !1Vin~r !1Vnl~r !#wout~r !1DW~r !

5«Fwout~r !, ~5!

where a5(3p2)2/3, and thearout
2/3 term is the TF kinetic

energy.Vnl(r ) is a local potential representing the nonloc
part of the potential in a Kohn-Sham pseudopotential wa
function calculation. This is done by a weighted~by the
atomic wave functions and their occupations! average of the
s,p,d, . . . angular momentum dependent nonlocal atom
pseudopotentials.«F is the Fermi energy in the Kohn-Sham
calculation.DW(r ) is a term introduced to modify the TFW
formula, so thatrout is the solution withVin of ~5!. There are
other ways to introduce this term such as replacing the sin
term by a potential multiplyingwout(r ); but after some tests
we found that~5! is more stable. AfterDW(r ) is calculated,
the total TFW energy functional, from which~5! is derived,
is:

ETFW@r#5E H 2
1

2
r1/2~r !¹2r1/2~r !1

3

5
ar5/3~r !

1r~r !@Vion8 ~r !1Vnl~r !#

1EHXC@r#12DW~r !r1/2~r !J d3r , ~6!

where EHXC@r(r )# is the conventional LDA Hartree an
exchange-correlation energy functional for a given cha
densityr(r ). It should be noted that in our scheme$ Vin ,
Vout% are the result of Pulay mixing but we have usedrout

5rout
m , the direct result of the m8th SCF iteration. As a resul

Vout is not theVLDA@rout# of Eq. ~2!. To restore this rela-
tionship in Eq. ~6! we have replacedVion by Vion8 5Vion

1Vout2VLDA@rout#. The minimum energy ofETFW@r# is
then solved using a conjugate gradient algorithm. The fi
solution givesrout

next(r ) and the corresponding potentialVout
next

equal toVin
next, within the TFW formalism, and thus satisfy

ing self-consistency. This is the TFW mixed potential whi
will be used for the next iteration of the Kohn-Sham equ
tions Eq.~1!. However, since the nonlocal potentialVnl(r ) is
treated in a very approximate way along with inherent lim
tations in the TFW formula, the largeq components in
Vin

next(q) may be inaccurate. Consequently, we use the c
ventional Kerker mixing for largeq components inVin

next(q).
We will now present some data for simulations using t

TFW formula for plane-wave pseudopotential calculatio
1-2



a
d
ad

te

on
re
o

nl
gh

o
s

rg

c
f

ha
ec
th
s
s
n

r
s.

he
ker
n-

-

rst-
in

en-
-
as

are
me
CF
ifies

ce

ds
his
s
ure

ts,

rs
rge
ula-

RAPID COMMUNICATIONS

THOMAS-FERMI CHARGE MIXING FOR OBTAINING . . . PHYSICAL REVIEW B64 121101~R!
using the LDA. While we have presented most of the form
ism for our approach in the context of a plane-wave pseu
potential calculation we believe our method may also be
vantageous for other DFT based approaches such as
FLAPW method.

In order to examine the role of theDW(r ) correction to
~5!, Fig. 1~a! shows the correction for bulk GaAs in the~110!
plane. For comparison, Fig. 1~b! shows the plot ofVinr1/2.
We have used the final converged charge density and po
tial. Figure 1 showsDW(r ) to be much smaller thanVinr1/2

which illustrates the general accuracy of the TFW equati
However, DW(r ) is appreciable near the atoms, whe
Vinr1/2 is the largest, showing why it is necessary to intr
duce this term. The larger value ofDW(r ) near the nuclei
can be attributed to the approximate treatment of the no
cal pseudopotentials and to the kinetic energy which is hi
est near the nuclei.

To study the effects of inhomogeneity and system size
the performance of the different mixing methods, we cho
to study one small GaAs surface system and three la
GaAs/InAs systems of increasing inhomogeneity~small dis-
placements from the ideal positions of the bulk, an interfa
and a surface! as well as an Al surface as representative o
metal. We simulated the semiconductor GaAs~with InAs for
an interface! as it represents a relatively simple system t
illustrates the advantages of our method and also has t
nological importance. All of the systems are extended in
~110! direction @~100! for Al #, each layer having two atom
~one atom for Al!. For the surface and interface calculation
we used the ideal bulk atomic positions. Since there are

FIG. 1. ~a! DW correction to the TFW equation in the~1-10!
plane for bulk GaAs.~b! Vinr1/2 in the ~1-10! plane for bulk GaAs.
DW andVinr1/2 are in the same arbitrary units.
12110
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surface states in the band gap18 for the GaAs surface, simila
findings would have resulted for the fully relaxed position
Figures 2~a!–2~e! show a comparison of convergence for t
five systems with the PTF mixing scheme, the Pulay-Ker
~PK! and Broyden~Br! schemes using an unconstrained co
jugate gradient~CG! algorithm for the electronic minimiza
tion ~diagonalization!.19 We used 10 CG steps~updates! for
each SCF cycle, 25 Rydberg cutoff, and a 1x4x4 Monkho
Pack mesh for all calculations. The Y-axis is the difference
energy at each SCF cycle from the final converged total
ergy and theX axis is the time per processor. All the simu
lations were carried out on a Cray T3E900. We chose time
our unit of measure since it is the fairest way to comp
different methods where the amount of calculation and ti
for each SCF cycle is different. The convergence per S
cycle can also be obtained from the graphs as each sign
one SCF step.

Figure 2~a! shows the convergence for the small surfa
system containing six layers of GaAs in the~110! direction
with six layers of vacuum~12 atoms total with fourk-points
in the irreducible Brillouin zone!. The system is sufficiently
small that Fig. 2~a! shows good convergence for all metho
even though the system is highly inhomogeneous. At t
system size,«(q,q8) is a well-conditioned matrix and thu
poses no problem for any of the different methods. Fig

FIG. 2. (E-Efinal) vs time for ~a! 6 layers GaAs–6 layers
vacuum,~b! 40 layers GaAs displaced randomly by small amoun
~c! 20 layers GaAs–20 layers InAs,~d! 20 layers GaAs–20 layers
vacuum~e! 20 layers Al–20 layers vacuum. Br, PK, and PTF refe
to the Broyden, Pulay-Kerker, and Pulay-Thomas-Fermi cha
mixing schemes. Each point represents one SCF step. All sim
tions were performed on a Cray T3E900 using 16 processors for~a!,
~e! and 64 processors for~b!, ~c! and ~d!.
1-3
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2~b! shows the convergence for a system of 40 layers
GaAs in the~110! direction with the atoms displaced ran
domly from their ideal positions, at most 0.028 Bohr~80
atoms total with 8k points!. Figure 2~b! shows little differ-
ence between the PTF and PK methods. With these s
displacements from the ideal positions the Thomas-Ferm
electric function for the homogeneous electron gas, whic
used in the Kerker mixing, is still a close approximation
the true dielectric function. The Broyden method shows v
poor convergence for this system. Figure 2~c! shows the
same data for an interface system of 20 layers of GaAs
20 layers of InAs, both in the~110! direction~80 atoms total
with 4 k-points!. This system can be considered to be mo
inhomogeneous than Fig. 2~b! and we now start to see th
advantages of the PTF scheme over the PK scheme. The
scheme converges about 15% faster. The dielectric func
approximation used in the Kerker scheme is becoming
valid. The Broyden method again shows the worst per
mance. The time per SCF cycle in Fig. 2~b! compared to Fig.
2~c! is roughly twice due to the decreased symmetry res
ing in morek-points in the irreducible Brillouin zone. Figur
2~d! shows the same information for a system of 20 layers
GaAs and 20 layers of vacuum~40 atoms total with 4
k-points! For this large, extremely inhomogeneous syst
we see significant differences between the PK and the
schemes with the PK scheme converging very slowly. T
dielectric function approximation used in the Kerker sche
is highly inaccurate for large surface calculations. Comp
ing to the smaller surface calculation@Fig. 2~a!# and the other
large, but more homogeneous systems@Figs. 2~b!, 2~c!#, Fig.
le
e
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2~d! clearly shows the problems of convergence for the
and Broyden schemes in dealing with large and inhomo
neous systems. The instability of the Broyden method ca
part be attributed to the overemphasis of gradient inform
tion. The PTF method still converges rapidly for these typ
of systems. Figure 2~e! shows the results for a 20 layer A
surface using Gaussian smearing at the Fermi-level, show
this method also works well for inhomogeneous metal s
tems with partial occupancies.

In conclusion, we have presented the Pulay-Thom
Fermi method for potential~or charge! mixing for the self-
consistent solution of the Kohn-Sham equations. T
method addresses the slow convergence and charge slo
that occurs for large and inhomogeneous systems. The
electric function«(q,q8) at smallq is calculated implicitly
as Vin

next is obtained by solving the self-consistent Thoma
Fermi-von Weizsa¨cker equation with the charge density
the variable. A large surface calculation of GaAs shows
method to be superior to current methods. The benefit of
method increases as inhomogeneity and system size
creases.
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